Passive strain-induced matrix synthesis and organization in shape-specific, cartilaginous neotissues.

نویسندگان

  • Regina F MacBarb
  • Nikolaos K Paschos
  • Reedge Abeug
  • Eleftherios A Makris
  • Jerry C Hu
  • Kyriacos A Athanasiou
چکیده

Tissue-engineered musculoskeletal soft tissues typically lack the appropriate mechanical robustness of their native counterparts, hindering their clinical applicability. With structure and function being intimately linked, efforts to capture the anatomical shape and matrix organization of native tissues are imperative to engineer functionally robust and anisotropic tissues capable of withstanding the biomechanically complex in vivo joint environment. The present study sought to tailor the use of passive axial compressive loading to drive matrix synthesis and reorganization within self-assembled, shape-specific fibrocartilaginous constructs, with the goal of developing functionally anisotropic neotissues. Specifically, shape-specific fibrocartilaginous neotissues were subjected to 0, 0.01, 0.05, or 0.1 N axial loads early during tissue culture. Results found the 0.1-N load to significantly increase both collagen and glycosaminoglycan synthesis by 27% and 67%, respectively, and to concurrently reorganize the matrix by promoting greater matrix alignment, compaction, and collagen crosslinking compared with all other loading levels. These structural enhancements translated into improved functional properties, with the 0.1-N load significantly increasing both the relaxation modulus and Young's modulus by 96% and 255%, respectively, over controls. Finite element analysis further revealed the 0.1-N uniaxial load to induce multiaxial tensile and compressive strain gradients within the shape-specific neotissues, with maxima of 10.1%, 18.3%, and -21.8% in the XX-, YY-, and ZZ-directions, respectively. This indicates that strains created in different directions in response to a single axis load drove the observed anisotropic functional properties. Together, results of this study suggest that strain thresholds exist within each axis to promote matrix synthesis, alignment, and compaction within the shape-specific neotissues. Tailoring of passive axial loading, thus, presents as a simple, yet effective way to drive in vitro matrix development in shape-specific neotissues toward more closely achieving native structural and functional properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Study on the Magnetomechanical Characteristics of Ni-Mn-Ga Ferromagnetic Shape Memory Alloy Single Crystals

Magnetic shape memory properties of Ni-Mn-Ga single crystals were characterized by measurement of stress-induced martensite reorientation under constant magnetic fields. Also magnetic field-induced strain as a function of the applied magnetic field under different constant compressive stress levels has been investigated. All the experiments were performed at room temperature in which the sample...

متن کامل

Nonlinear Thermo-Mechanical Behaviour Analysis of Activated Composites With Shape Memory Alloy Fibres

General thermo-mechanical behavior of composites reinforced by shape memory alloy fibers is predicted using a three-dimensional analytical micromechanical method to consider the effect of fibers activation. Composite due to the micromechanical method can be exposed to general normal and shear mechanical and thermal loading which cause to activate the shape memory alloy fibers within polymeric m...

متن کامل

Propagation of Matrix Cracking and Induced Delaminatin in Cross-Ply Composite Beams Subjected to Bending Loads

Due to the mismatch of mechanical properties in composite laminates, propagation of delami-nation is considered as a severe damage mechanism in beams with various lay-up configurations. Delamination can be generated due to matrix cracking propagation or it can also be initiated due to the manufacturing process before using composite beams. Using a micromechanics model, this study is aimed to in...

متن کامل

Application of Shape Memory Alloys in Seismic Isolation: A Review

In the last two decades, there has been an increasing interest in structural engineering control methods. Shape memory alloys and seismic isolation systems are examples of passive control systems that use of any one alone, effectively improve the seismic performance of the structure. Characteristics such as large strain range without any residual deformation, high damping capacity, excellent re...

متن کامل

Nonlinear Buckling and Post-buckling of Shape Memory Alloy Shallow Arches

In this work, the nonlinear buckling and post-buckling behavior of shallow arches made of Shape Memory Alloy (SMA) is investigated. Arches are susceptible to large deflections, due to their slenderness, especially when the external load exceeds the serviceability limit point. Beyond this, loss of stability may occur, the famous snap-through buckling. For this reason, curved beams can be used in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tissue engineering. Part A

دوره 20 23-24  شماره 

صفحات  -

تاریخ انتشار 2014